70 research outputs found

    Epigenetics and cell death: DNA hypermethylation in programmed retinal cell death.

    Get PDF
    BackgroundVertebrate genomes undergo epigenetic reprogramming during development and disease. Emerging evidence suggests that DNA methylation plays a key role in cell fate determination in the retina. Despite extensive studies of the programmed cell death that occurs during retinal development and degeneration, little is known about how DNA methylation might regulate neuronal cell death in the retina.MethodsThe developing chicken retina and the rd1 and rhodopsin-GFP mouse models of retinal degeneration were used to investigate programmed cell death during retinal development and degeneration. Changes in DNA methylation were determined by immunohistochemistry using antibodies against 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC).ResultsPunctate patterns of hypermethylation paralleled patterns of caspase3-dependent apoptotic cell death previously reported to occur during development in the chicken retina. Degenerating rd1 mouse retinas, at time points corresponding to the peak of rod cell death, showed elevated signals for 5mC and 5hmC in photoreceptors throughout the retina, with the most intense staining observed in the peripheral retina. Hypermethylation of photoreceptors in rd1 mice was associated with TUNEL and PAR staining and appeared to be cCaspase3-independent. After peak rod degeneration, during the period of cone death, occasional hypermethylation was observed in the outer nuclear layer.ConclusionThe finding that cell-specific increases of 5mC and 5hmC immunostaining are associated with the death of retinal neurons during both development and degeneration suggests that changes in DNA methylation may play a role in modulating gene expression during the process of retinal degeneration. During retinal development, hypermethylation of retinal neurons associates with classical caspase-dependent apoptosis as well as caspase-3 independent cell death, while hypermethylation in the rd1 mouse photoreceptors is primarily associated with caspase-3 independent programmed cell death. These findings suggest a previously unrecognized role for epigenetic mechanisms in the onset and/or progression of programed cell death in the retina

    Hypomethylation of the IL17RC promoter in peripheral blood leukocytes is not a hallmark of age-related macular degeneration

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Aberrant DNA methylation within the promoter of IL17RC in peripheral blood mononuclear cells has recently been reported in AMD. To validate this association, we examined DNA methylation of the IL17RC promoter in peripheral blood. First, we used Illumina Human Methylation450 Bead Arrays, a widely accepted platform for measuring global DNA methylation. Second, methylation status at multiple sites within the IL17RC promoter was determined by bisulfite pyrosequencing in two cohorts. Third, a methylation-sensitive quantitative PCR-based assay was performed on a subset of samples. In contrast to previous findings, we did not find evidence of differential methylation between AMD cases and age-matched controls. We conclude that hypomethylation within the IL17RC gene promoter in peripheral blood is not suitable for use as a clinical biomarker of AMD. This study highlights the need for considerable replication of epigenetic association studies prior to clinical application

    Definitions and Standardization of a New Grading Scheme for Eyelid Contour Abnormalities after Trichiasis Surgery

    Get PDF
    Approximately 8 million individuals worldwide suffer from trichiasis, a condition characterized by in-turned lashes that rub against the eye. Trichiasis is caused by repeated or prolonged ocular infection with Chlamydia trachomatis. Surgery is available to correct in-turned lashes. In most programmatic and research settings, the primary determinant of surgical success is whether or not lashes are touching the globe post-operatively. However, other surgical outcomes such as the contour of the eyelid are also important. Yet, no standard method for evaluating and reporting this outcome has been defined. In this study, we developed and tested a grading system for evaluating the severity of eyelid contour abnormalities after surgery using photographs of eyelids six weeks post-operatively. We found good agreement across photograph graders and also between field and photograph grades. This system should be useful in helping to standardize reporting of this outcome

    Pre-operative trichiatic eyelash pattern predicts post-operative trachomatous trichiasis.

    Get PDF
    IMPORTANCE: Trichiasis surgery programs globally have faced high rates of poor surgical outcomes. Identifying correctable risk factors for improving long-term outcomes is essential for countries targeting elimination of trachoma as a public health problem. OBJECTIVE: To determine whether the location of trichiatic eyelashes prior to surgery influences development of post-operative trichiasis (PTT) within two years after surgery. DESIGN: Secondary data analysis of four randomized clinical trials evaluating methods to improve trichiasis surgery outcomes. These include the Surgery for Trichiasis, Antibiotics for Recurrence (STAR) trial, Partnership for Rapid Elimination of Trachoma (PRET-Surgery), absorbable versus silk sutures trial, and epilation versus surgery for minor trichiasis trial. SETTING: Primary trials were conducted in rural areas of Ethiopia and Tanzania. INTERVENTIONS OR EXPOSURES: Trichiasis surgery performed with either the bilamellar tarsal rotation procedure or posterior lamellar rotation procedure. MAIN OUTCOMES: Prevalence of PTT within two years after surgery, location of trichiatic eyelashes pre-operatively and post-operatively. RESULTS: 6,747 eyelids that underwent first-time trichiasis surgery were included. PTT rates varied by study, ranging from 10-40%. PTT was less severe (based on number of trichiatic eyelashes) than initial trichiasis for 72% of those developing PTT, and only 2% of eyelids were worse at follow up than pre-operatively. Eyelids with central only-trichiasis pre-operatively had lower rates of PTT than eyelids with peripheral only trichiasis in each of the three trials that included severe TT cases. 10% of eyelids with peripheral trichiasis pre-operatively that develop PTT have central TT post-operatively. CONCLUSIONS AND RELEVANCE: Pre-operative central trichiasis is less likely than peripheral trichiasis to be associated with subsequent PTT. Regardless of type of surgery, surgeon skill levels, or pre-operative trichiasis severity, the presence of peripheral trichiasis pre-operatively is associated with higher rates of PTT. Making an incision that extends the length of the eyelid and adequately rotating the nasal and temporal aspects of the eyelid when suturing may help to minimize the chance of developing peripheral PTT. TRIAL REGISTRATION: ClinicalTrials.gov PRET: NCT00886015; Suture: NCT005228560; Epilation: NCT00522912

    Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death

    Get PDF
    Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations

    Dynamic usage of alternative splicing exons during mouse retina development

    Get PDF
    Alternative processing of pre-mRNA plays an important role in protein diversity and biological function. Previous studies on alternative splicing (AS) often focused on the spatial patterns of protein isoforms across different tissues. Here we studied dynamic usage of AS across time, during murine retina development. Over 7000 exons showed dynamical changes in splicing, with differential splicing events occurring more frequently in early development. The overall splicing patterns for exclusive and inclusive exons show symmetric trends and genes with symmetric splicing patterns that tend to have similar biological functions. Furthermore, we observed that within the retina, retina-enriched genes that are preferentially expressed at the adult stage tend to have more dynamically spliced exons compared to other genes, suggesting that genes maintaining retina homeostasis also play an important role in development via a series of AS events. Interestingly, the transcriptomes of retina-enriched genes largely reflect the retinal developmental process. Finally, we identified a number of candidate cis-regulatory elements for retinal AS by analyzing the relative occurrence of sequence motifs in exons or flanking introns. The occurrence of predicted regulatory elements showed strong correlation with the expression level of known RNA binding proteins, suggesting the high quality of the identified cis-regulatory elements

    Cell-Specific DNA Methylation Patterns of Retina-Specific Genes

    Get PDF
    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl −/− mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that correlates inversely with their expression level. Furthermore, these cell-specific patterns suggest that DNA methylation may play an important role in modulating photoreceptor gene expression in the developing mammalian retina

    Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation

    No full text
    One important role of epigenetic regulation is controlling gene expression in development and homeostasis. However, little is known about epigenetics’ role in regulating opsin expression. Cell cultures (HEK 293, Y79, and WERI) producing different levels of opsins were treated with 5-aza-2’-deoxycytidine (5-Aza-dc) and/or sodium butyrate (SB) or suberoylanilide hydroxamic acid (SAHA) for 72 h. Global DNA methylation, site-specific methylation, and expressions of opsins were measured by LUMA assay, bisulfite pyrosequencing, and qPCR, respectively. Mouse retinal explants from wild-type P0/P1 pups were ex vivo cultured with/without 5-Aza-dc or SAHA for 6 days. The morphology of explants, DNA methylation, and expressions of opsins was examined. The drugs induced global DNA hypomethylation or increased histone acetylation in cells, including DNA hypomethylation of rhodopsin (RHO) and L-opsin (OPN1LW) and a concomitant increase in their expression. Further upregulation of RHO and/or OPN1LW in HEK 293 or WERI cells was observed with 5-Aza-dc and either SB or SAHA combination treatment. Mouse retinal explants developed normally but had drug-dependent differential DNA methylation and expression patterns of opsins. DNA methylation and histone acetylation directly regulate opsin expression both in vitro and ex vivo. The ability to manipulate opsin expression using epigenetic modifiers enables further study into the role of epigenetics in eye development and disease

    Fluctuating nature of an orbital venous-lymphatic anomaly in association with intracranial vascular malformations: a classical presentation.

    No full text
    Venous-lymphatic anomalies (VLA) are rare and benign congenital lesions of the lymphatic system, composed of endothelial-lined lymphatic cysts. They are most frequently located in the region of the head and neck, and represent 4% of all orbital masses. In those patients with extensive orbital VLAs, a strong association with intracranial vascular anomalies has been reported. Factors known to suddenly increase the size of these lesions include upper respiratory tract infections or intralesional haemorrhage; however, complete spontaneous regression is rare. We report on the classic presentation of a patient with a fluctuating right orbital VLA in association with an intracranial cavernous malformation and intracranial developmental venous anomaly
    corecore